

T890(E)(A4)T

NON-NATIONAL CERTIFICATE

INSTALLATION RULES

(Second Paper)

(11040432)

4 April 2018 (X-Paper) 09:00-12:00

Nonprogrammable calculators may be used.

This question paper consists of 6 pages and 3 addenda.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NON-NATIONAL CERTIFICATE
INSTALLATION RULES
(SECOND PAPER)
TIME: 3 HOURS

MARKS: 100

INSTRUCTIONS AND INFORMATION

- Answer ALL the questions.
- Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Even though NOT explicitly stated in a question, ALL answers must comply with the relevant codes and/or requirements of the SANS publications (latest edition) and the Occupational Health and Safety Act regulations.
- 5. The answers need NOT be word-perfect in all aspects according to the publications, but must show that the candidate fully understands the context of the relevant questions.
- 6. The necessary tables are supplied.
- 7. The candidates must pass PAPER 1 and PAPER 2 with 50% each. Both examination papers may be written during the same examination period. However, candidates need not pass both examinations during the same trimester, but the second examination must be passed within 12 months of the first otherwise both examinations must be re-written. If a candidate obtains 75 out of 100 marks in ANY ONE of the examinations, he/she will be permanently exempted from re-writing that examination. An appropriate statement will be issued. For accreditation purposes ALL candidates must meet the requirements prescribed by the Department of Labour.
- 8. NO condonations will be considered.
- 9. Answers must be calculated to 2 decimal places
- 10. Start each question on a NEW page.
- 11. Write neatly and legibly.

QUESTION 1: SANS 1973 OF 2008: LV SWITCHGEAR AND CONTROLGEAR ASSEMBLIES PART 3: SAFETY OF ASSEMBLIES WITH A RATED PSSC OF UP TO 10 kA

1.1 State the *scope* for the above code. (5)

1.2 Name, and give an explanation of, the FOUR degrees of pollution for switching devices and components fitted inside an enclosure.

(5) **[10]**

QUESTION 2: SANS 10142-1 OF 2008: ANNEXURE C: PROSPECTIVE SHORT-CIRCUIT CURRENT

To calculate the impedance of a phase conductor the following formula is used:

$$Z = \frac{\ell\sqrt{\frac{R^2 + X^2}{1000}}}$$

Explain the representation of the following:

2.1 L (2)

2.2 R (2)

2.3 X (2)

To calculate the PSCC of batteries the following formula is used:

Explain the representation of the following:

2.4 Eb (1)

2.5 RB (1)

2.6 RBL (1)

2.7 Ry (1) [10]

QUESTION 3: SANS 10142-1 OF 2008: CALCULATION OF VOLTAGE DROP

A single-phase 10 kW motor is connected 50 m from the distribution board by an underground armoured copper cable.

- 3.1 Use different cable sizes to determine the correct cable suitable for this motor, starting with the smallest cable for the load given, and calculate the correct cable that can be used.
 - Show ALL calculations. (8)
- 3.2 Give a reason why the cable in QUESTION 3.1 was selected. (1)
- 3.3 Calculate the % voltage drop of the correct cable. (1) [10]

QUESTION 4: SANS 10142-1 of 2008: VERIFICATION AND CERTIFICATION

- 4.1 Explain how the earth leakage unit test is performed. (6)
- 4.2 How is the insulation resistance test performed where there are subdistribution boards of which the total insulation resistance is less than 1,0 $M\Omega$? (4)

QUESTION 5: SANS 10142-1 OF 2008: VERIFICATION AND CERTIFICATION

Name TEN inspections that must be carried out during the inspection of a new or existing installation. [10]

QUESTION 6: SANS 10142-1 OF 2008: INSTALLATION REQUIREMENTS - GENERAL CIRCUIT ARRANGEMENTS

Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'true' or 'false' next to the question number (6.1–6.10) in the ANSWER BOOK.

- In a multiphase installation the circuit shall be so arranged that the total load is balanced, as closely as is practicable, between phases of the supply.
- 6.2 Throughout the circuit, the neutral conductor shall have the same nominal cross-sectional area as the earth conductor.
- 6.3 A maximum of THREE conductors may be connected to any one terminal provided that the terminal has the correct rating.
- The neutral conductor may be connected directly to the earth or to the earth continuity conductor on the supplier side of the installation.

- 6.5 All the conductors of any circuit shall originate at the same distribution board.
- 6.6 If conductors that operate at different voltages run in the same wireway, the insulation of each conductor shall be able to withstand the lowest conductor voltage in the wireway.
- 6.7 If a luminaire is used as a wireway (through-wiring), heat-resistant cable that complies with SANS 529 shall be used.
- 6.8 The continuity of neutral and earth shall be ensured at all times, and except where the luminaire is used as a wireway for through-wiring, the continuity may be disturbed during the repair, replacement or removal of any appliance.
- 6.9 A conductor that forms part of a DC installation can be run in the same wireway as a conductor that forms part of an AC installation, provided that the voltage rating is the same.
- 6.10 Flexible cords can be used as part of the electrical installation, when used in an authorised wiring system.

 (10×1) [10]

QUESTION 7: SANS 10142-1 OF 2008: INSTALLATION REQUIREMENTS - INSTALLATION OF CONDUCTORS AND CABLES

- 7.1 Give FOUR requirements when joints and terminations are made in an installation. (4)
- 7.2 Give FOUR measures to be taken when fixing cables. (4)
- 7.3 What are the requirements when unarmoured, insulated and sheathed cables are buried at a depth of at least 0,5 m? (2)

 [10]

QUESTION 8: SANS 10142-1 OF 2008: INSTALLATION REQUIREMENTS - WIREWAYS

Complete the following sentences by providing the missing information. Write only the missing information next to the question number (8.1–8.10) in the ANSWER BOOK.

- 8.1 A wireway shall be installed such that ...
- 8.2 Joints other than expansion joints ...
- 8.3 Expansion joints ...
- 8.4 All inspection joints and boxes ...
- 8.5 All boxes and expansion joints that could be splashed with liquid ...

8.6	It shall be able to withstand	
8.7	Any cable, other than a high-voltage cable for a discharge lamp installation, may	
8.8	No part of the wireway	
8.9	Metal doors, covers or hinged panels	
8.10	Cable entry points, exit points, and the internal surface of the wireway (10×1)	[10]
QUESTI	ON 9: SANS 10142-1 of 2008: INSTALLATION REQUIREMENTS - PROTECTION	
9.1	Give FOUR conditions on which conductors that form part of an installation, may be protected by the supplier's overcurrent protective device.	(4)
9.2	Give THREE instances where every socket outlet circuit shall be fitted with warning labels.	(3)
9.3	What are the installation requirements for an earth-leakage protection device that is not provided with integral overcurrent protection?	(3) [10]
QUESTI	ON 10: SANS 10142-1 OF 2008: INSTALLATION REQUIREMENTS - SOCKET OUTLETS	
10.1	What are the requirements regarding a single-phase socket outlet for general use?	(3)
10.2	State FOUR requirements regarding socket outlets that supply voltages other than the standard voltage.	(4)
10.3	Give THREE types of mixed load that a single-phase circuit that has overcurrent protection rated at not more than 20 A, may supply.	(3) [10]
	TOTAL:	100

SANS 10142-1:2003

Edition 1.1

(As amended 2005)

Table 6.8 — Multicore PVC insulated armoured cables buried directly in the ground (SANS 1507)

Current-carrying capacity

Soil temperature: 25 °C

Maximum conductor temperature: 70 °C

1	2	3	4	5										
	Standard rating ^a – Copper cables A													
Nominal conductor size	Cables bu	uried in the ground	Cables in pipes or ducts burie in the ground											
mm²	Two-core	Three-core or four- core	Two-core	Three-core or four- core										
	Cu	Cu	Cu	Cu										
1,5	29	24	23	20										
2,5	37	32	31	26										
4	50	42	41	34										
6	62	53	51	43										
10	83	70	68	58										
16	107	91	88	75										
25	142	119	116	96										
35	171	143	139	116										
50	203	169	165	138										
70	249	210	203	171										
95	299	251	244	205										
120	339	285	278	234										
150	380	320	311	263										
185	430	361	354	298										
240	496	416	410	344										
300	554	465	459	385										
400	624	522	517	441										

NOTE See table 6.4(b) for voltage drop.

Depth of burial: 0,5 m
Thermal resistivity of soil: 1,2 K·m/W
Each cable is thermally independent.

Amdt 4

^a Standard conditions of installation:

SANS 10142-1:2003 Edition 1.1

Ambient temperature: 30 °C Conductor operating temperature: 70 °C

Table E.1 - Impedance of 600/1 000 V conductors that comply with SANS 1507

	/	tance R for d.c.	lits m		Aluminium Al	36,0	24,0	14,4	0'6	6,0	3,6	2,2	1,44	1,03	0,72	0,51	0,38	0,30	0,24	0,19	0,150	0,120	0,090	0,072	0.045	0,036
c	Q	Conductor resistance R for d.c.	circuits Ω/km		Copper Cu	21,9	14,6	8,7	5,5	3,6	2,2	1,4	0,87	0,62	0,44	0,31	0,23	0,18	0,15	0,12	0,091	0,073	0,055	0,044	0.027	0,022
L	5	Conductor reactance X for a.c. circuits	Ω/km	Material of conductor	Aluminium Al	0,107	0,100	0,095	0,093	060'0	0,084	0,080	0,079	0,076	0,076	0,074	0,073	0,072	0,072	0,072	0,072	0,071	0,071	0,070	0.058	0,049
	4	Conductor react		Materia	Copper Cu	0,107	0,100	0,095	0,093	060'0	0,084	0,080	0,079	0,076	0,076	0,074	0,073	0,072	0,072	0,072	0,072	0,071	0,071	0,070	0.058	0,049
atale: 70 0	3	stance R for a.c.	circuits Ω/km		Aluminium Al	36,0	24,0	14,4	0'6	0,9	3,6	2,3	1,44	1,03	0,72	0,52	0,38	0,30	0,24	0,20	0,156	0,127	0,099	0,083	0.061	0.054
	7	Conductor resis	circ O		Copper Cu	21,9	14,6	8,7	5,5	3,6	2,2	1,4	0,88	0,63	0,44	0,31	0,23	0,18	0,15	0,12	0,095	0,077	0,060	0,050	0.037	0 033
Colladetol Operating temper			Nominal cross- sectional area	of conductor	mm ₂	_	1,5	2,5	4	9	10	16	25	35	20	20	95	120	150	185	240	300	400	500	800	1 000

SANS 10142-1:2003

Edition 1.1

	18		320	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	-	273					
ıt a given	17	Circuit-breaker current rating	Circuit-breaker current rating A		300	ı	ı	ı	1	ı	ı	ī	ī	ī	ī	-	-	ı	255	319			
	16				•	250	ı	ı	ı	-	-	-	-	1	1	1	-	_	255	306	383		
	15			225	ı	ı	ı	1	-	-	1	1	1	1	-	222	283	340	425				
rcuits a	14			ker current rating A	ker current rating A		200	ı	ı	ı	1	1	1	1	ı	ı	ı	1	250	319	383	479	
bles/ci = 1 ba	13					150	ı	ı	ı	-	-	-	-	1	1	174	247	333	425	511	638		
pper ca ase (Fv	12					nt rating	nt rating	125	ı	ı	ı	1	1	1	1	1	1	209	296	400	511	613	99/
Table E.2(b) — Maximum lengths, in metres, of copper cables/circuits at a given circuit-breaker current rating for three-phase (F _V = 1 balanced)	11					100	ı	ı	ı	-	-	-	-	1	185	261	370	200	638	992	1		
	10			80	ı	ı	ı	1	1	1	1	165	231	326	463	625	798	-	-				
s, in n rating	6			90	ı	ı	ı	ı	1	1	136	220	309	435	618	ı	ı	ı	ı				
ength: rrent	8			20	ı	ı	ı	-	1	104	164	264	370	522	741	_	ı	-	-				
num l	7	·	40	ı	ı	ı	1	79	130	205	330	463	653	1	-	ı	1	1					
Maxin -brea	9		30	ı	ı	ı	69	106	174	273	440	618	ī	_	_	ı	-	-					
2(b) — circuit	5		25	ı	ı	ı	83	127	209	328	528	741	1	-	_	ı	1	1					
le E.2	4		20	1	1	99	104	159	261	410	099	-	-	-	-	-	_	1					
Тар	3	·	15	ı	52	88	139	212	348	547	ī	ī	ī	ı	ı	ı	1	ı					
	2		10	52	8/	132	509	319	522	1	-	-	1	_	_	ı	-	-					
	1	Nominal cross- sectional area		1	1,5	2,5	4	9	10	16	25	35	20	20	98	120	150	185					