

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T1000(E)(M27)T

NATIONAL CERTIFICATE

MATHEMATICS N2

(16030192)

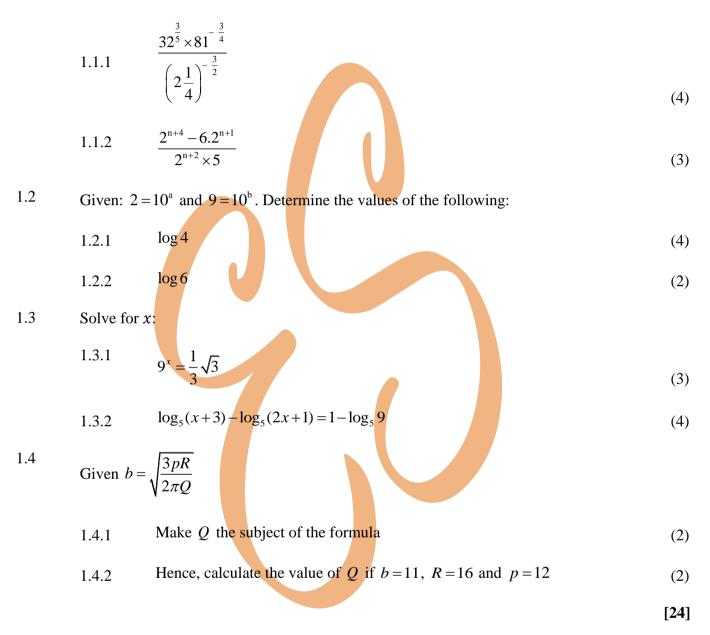
27 March 2018 (X-Paper) 09:00–12:00

Calculators may be used.

This question paper consists of 6 pages, a formula sheet of 2 pages and 2 sheets of graph paper.

-2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA


NATIONAL CERTIFICATE MATHEMATICS N2 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Show ALL formulae and intermediary steps and simplify where possible.
- 5. ALL final answers must be rounded off to THREE decimal places (unless indicated otherwise).
- 6. Questions may be answered in any order, but subsections of questions must NOT be separated.
- 7. Questions must be answered in BLUE or BLACK ink.
- 8. All graph work must be done on the attached graph paper.
- 9. Write neatly and legibly.

QUESTION 1

1.1 Simplify each of the following expressions using exponential laws. The use of a calculator is restricted. Show all the steps.

QUESTION 2

2.1 Factorise the following expression:

$$16p^2 - 25q^2 - 4p - 5q \tag{3}$$

2.2 Determine the lowest common multiple (LCM) of the following three expressions:

$$x^{3} - xy^{2}$$

$$2x^{2} + xy - 3y^{2}$$

$$2x^{2} - 4xy + 2y^{2}$$
(7)
Simplify each of the following:

2.3 Simplify each of the following:

2.3.1
$$\frac{a^2c - b^2c}{a^2 - 2ab + b^2} \div \frac{ac + bc}{a - b}$$
(5)
$$4 \qquad x \qquad 8x$$

2.3.2
$$\frac{1}{x+4} + \frac{x}{x-4} - \frac{1}{x^2 - 16}$$
 (7) [22]

QUESTION 3

3.2

3.1 A bag contains 60 green and white pool balls. Twice the number of green balls is 9 more than the white balls.

Calculate the number of green and white balls respectively. (4) Solve for *x*:

$$5x^2 - 3x - 3 = 0 \tag{4}$$

3.3 Given: A wheel of a motorcycle with a diameter of 75 cm rotates at 10,54 r/s.

Calculate:

3.3.1	The angular velocity in radians per second	(2)
3.3.2	The peripheral velocity in m/s	(3)
Acastan	of a simple has an area of 194 cm^2 and an angle of 69°	

3.4 A sector of a circle has an area of 184 cm^2 and an angle of 68° .

Calculate the arc length of the circle.

(5) [**18**] 4.2

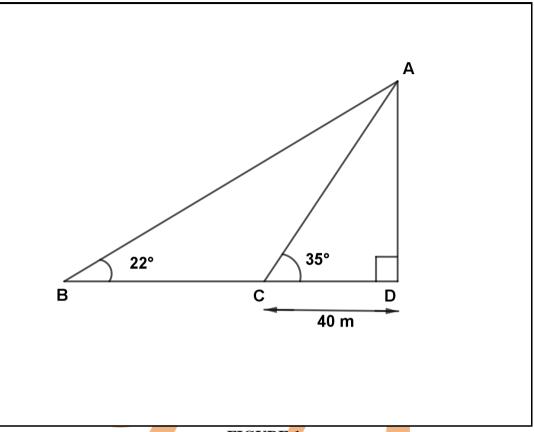
4.3

QUESTION 4

4.1 An ice cream cone has a base diameter of 50 mm and a slant height of 135 mm.

Calculate the following:

4.1.1	The surface area of the cone	(2)
4.1.2	The volume of the cone	(4)
The ordir	nates in cm of an irregular plate are as follows: 120; 127; 139; 143; 147; 163;	
157; 148;	; 153; 148; 136 and 118. The area of th <mark>e p</mark> late is 18 960 cm ² .	
Determin	e the common interval in cm.	(3)
Calculate	the volume of a sphere with a surface area of 125 m^2 .	(4)
		[13]


QUESTION 5

5.1 Given: $y = -2 \cos x$ and $y = 1 + \sin x$ ($0^\circ \le x \le 180^\circ$)

5.1.1	Use the AT	FACHED	graph paper	and draw	the giver	graphs in 5.1 on the	
	same system	n of axes.					(6)

5.1.2 Read the value(s) of x for which $-2\cos x - 1 = 0$ from the graph. (1)

5.2 Consider FIGURE 1 below.

FIGURE 1

The angle of elevation from a point C on the ground to the top of a building AD is 35° . The point C is 40 m from the foot of the building. From a point B slightly further away from the building, the angle of elevation to the top of the building is 22° . If BCD is a straight line, determine:

5.2.1	The height	AD of the building		(3)

5.2.2 The distance between the points B and C (5)

[15]

QUESTION 6

Given: $y + x^2 + 4x = 0$ and y - 2x - 8 = 0

6.1	Use the ATTACHED graph paper and use one system of axes to sketch the given graphs. Clearly indicate the roots, the <i>x</i> -intercept(s), <i>y</i> -intercept(s) and coordinates of						
6.2	the turning point(s) of the graphs where applicable. From the graph, give the coordinates of the points where the graphs intersect.	(6) (2)					
		[8]					

TOTAL: 100

MATHEMATICS N2

FORMULA SHEET

Right cone

Volume = $\frac{1}{3}\pi r^2 h$ Surface area = $\pi r \sqrt{h^2 + r^2} + \pi r^2$ = $\pi r l + \pi r^2$

Cylinder

Volume = $\pi r^2 h$ Surface area = $2\pi r^2 + 2\pi rh$

Sphere

Volume = $\frac{4}{3}\pi r^3$ Area = $4\pi r^2$

Right pyramid

Volume = $\frac{1}{3}$ (area of base) x (perpendicular height)

Prism

Volume = (area of base) x (perpendicular height)

Degrees and radians

180° = π rad Sector: $\theta = \frac{\operatorname{arc}}{\operatorname{radius}}$; $A = \frac{1}{2}r^2\theta$

Angular velocity and circumfe<mark>ren</mark>tial velocity

Angular velocity: $w = 2\pi n$ Circumferential velocity: $v = \pi Dn$ n = rotation frequency (r/s = revolution per second)

Mid-ordinate rule

Area = (distance between ordinates) x (sum of other mid-ordinates)

 $= \left[\frac{(\text{First Ordinate+Last Ordinate})}{2} + \text{ Sum of all other ordinates}\right] \times \text{ The distance between the ordinates}$

Graphs

Straight line: y = mx + cParabola: $y = ax^2 + bx + c$ Axis of symmetry: $x = \frac{-b}{2a}$ Roots $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Trigonometry

 $90^{\circ} < \theta < 180^{\circ}$ $\sin \theta = \sin(180^{\circ} - \theta)$ $\cos \theta = -\cos(180^{\circ} - \theta)$ $\tan \theta = -\tan(180 - \theta)$

Segment of circles

Chord length = x Height of the segment = h Diameter of circle = D

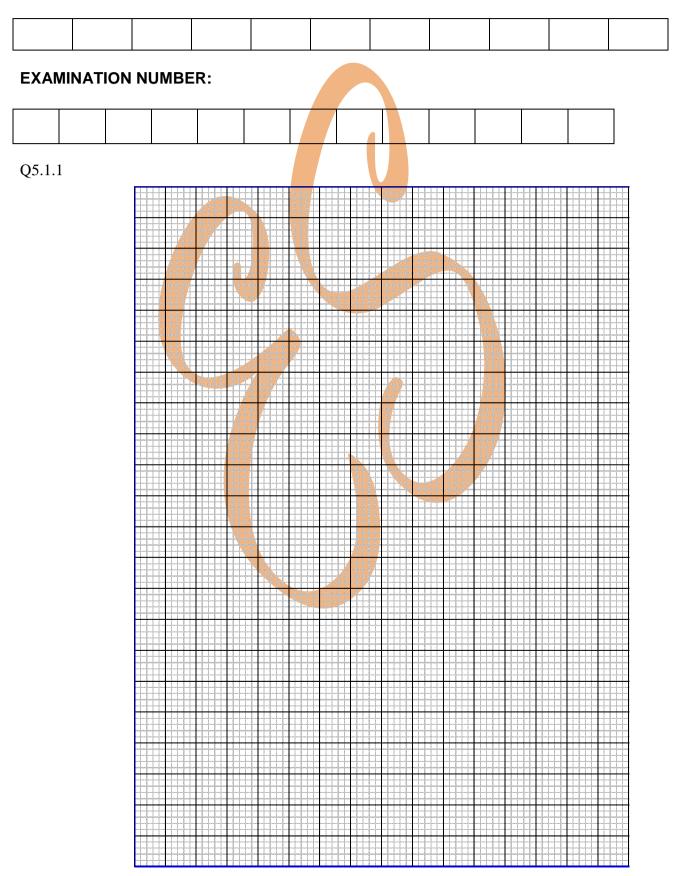
 $D = h + \frac{x^2}{4h}$

Regular polygons Angle subtended at centre of circumscribed circle by one side:

 $\theta = \frac{360^{\circ}}{\text{number of sides}}$

R = radius of circumscribed circle x = length of side

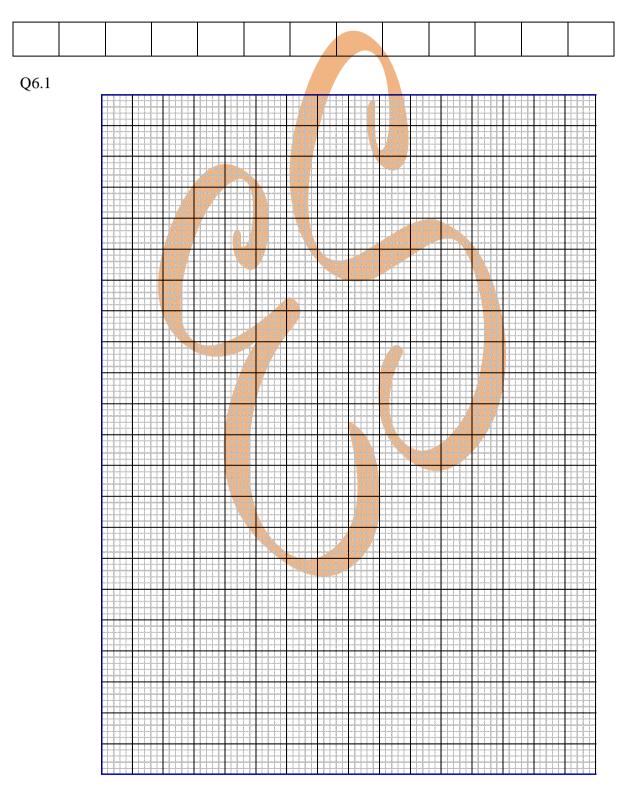
$$x = 2R\sin\frac{\theta}{2}$$


Annulus: $A = \pi (R^2 - r^2)$

-2-

MATHEMATICS N2 GRAPH PAPER

Complete and staple the page in your ANSWER BOOK after the front page.


CENTRE NUMBER

-2-

CENTRE NUMBER:

EXAMINATION NUMBER:

