

T240(E)(A2)T

NATIONAL CERTIFICATE BUILDING SCIENCE N2

(15070012)

2 April 2019 (X-Paper) 09:00-12:00

Calculators may be used.

This question paper consists of 4 pages, 2 diagram sheets and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE BUILDING SCIENCE N2 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Sketches must be large, neat and fully labelled.
- 5. ALL drawings must be done in pencil.
- 6. ALL the drawings must be drawn to the required scale.
- 7. Write neatly and legibly.

QUESTION 1

Define the following terms:

- 1.1 Law of moments
- 1.2 Archimedes principle of floatation
- 1.3 Resultant force
- 1.4 The centroid
- 1.5 Cantilever

 (5×3) [15]

QUESTION 2

QUESTION 3

The beam shown in FIGURE 1 on DIAGRAM SHEET 1 (attached) is held at equilibrium by the reactions R_L and R_R .

- 2.1 Calculate the magnitude of support R_L by taking moments about R_R . (5)
- 2.2 Calculate the magnitude of support R_R by taking moments about R_L (5)
- 2.3 Test your answer by taking into account the sum of the upward forces and the sum of the downward forces. (3)

 [13]

- 3.1 The lever arm in FIGURE 2 on DIAGRAM SHEET 1 (attached) is held in equilibrium by upwards forces with a turning point at the pivot.
 - 3.1.1 Calculate the magnitude of force Q. (4)
 - 3.1.2 Draw the vector diagram to determine the magnitude of the resultant force to scale 1 kN = 1 mm. (6)
- 3.2 3.2.1 Name TWO absorbent building materials. (2)
 - 3.2.2 Name TWO non-absorbent building materials. (2) [14]

QUESTION 4

The piece of metal plate of even thickness shown in FIGURE 3 DIAGRAM SHEET 1 (attached) has a triangular hole. The compound section is symmetrical about the Y-Y axis. ALL measurements are in millimetres.

- 4.1 Calculate the total area of the compound section. (5)
- 4.2 Determine the distance of the centroid of each section from M-M. (2)
- 4.3 Calculate the sum of the moments of the section about M-M. (6)
- 4.4 Calculate the position of the centroid of the compound section from M-M. (3)
- 4.5 On your own scale, redraw FIGURE 3 next to the question number (4.5) in the ANSWER BOOK and indicate the position of the centroid on the drawing.

(4) [20]

QUESTION 5

The cantilever frame shown in FIGURE 4 on DIAGRAM SHEET 2 (attached) is fixed to a wall.

- 5.1 On your own scale, redraw the space diagram in FIGURE 4 next to the question number (5.1) in the ANSWER BOOK and enter Bow's notation. (3)
- 5.2 On a suitable scale, complete the vector diagram required to analyse the forces in the members. (9)
- Determine the magnitude and nature of the forces in each member of the 5.3 frame and tabulate the findings neatly. (6)

[18]

QUESTION 6

- 6.1 Define the term heat. (3)
- 6.2 Name the THREE ways in which heat can be transferred. (3)
- 6.3 Name FOUR sources of heat. (4)
- A copper pipe shows an increase in length of 14 mm. 6.4

A change in temperature of 78 °C was recorded.

- Calculate the original length of the pipe if the coefficient of linear expansion for copper is 1.7×10^{-5} /°C. (4)
- 6.5 With the aid of sketches, describe any suitable experiment to prove that different metals have different coefficients of linear expansion. (6)[20]

TOTAL: 100

DIAGRAM SHEET 1

FIGURE 1

FIGURE 2

FIGURE 3

DIAGRAM SHEET 2

FIGURE 4

(15070012) T240**(E)**(A2)T

BUILDING SCIENCE N2

FORMULA SHEET

Any applicable formula may be used.

1.
$$F = m \times g$$

2.
$$Sin \emptyset = O/H$$
 $Sin \emptyset = T/S$

3.
$$\cos \theta = A/H$$
 $\cos \theta = A/S$

4.
$$Tan\phi = O/A$$
 $Tan\phi = T/A$

5.
$$A = \pi \frac{D^2}{4} = \pi r^2$$

6.
$$A = \frac{1}{2}(B \times H)$$
 $A = \frac{1}{2}(L \times B)$

7.
$$V = \pi \frac{D^2}{4} x H$$

8.
$$\sum CM = \sum ACM$$

9.
$$\sum \uparrow F = \sum \downarrow F$$

10.
$$V = L \times B \times H$$

11.
$$M = F \times S$$

12.
$$K = C + 273$$

13. Moment of area = area x distance from axis

16.
$$y = \frac{\sum My}{\sum A}$$

17.
$$D = \frac{M}{V}$$

18.
$$RD = \frac{DxS}{DxW} = RD = \frac{MxS}{MxW}$$

19.
$$\Delta L = Lo \times \Delta T \times \alpha$$

20. Heat required =
$$m \times \Delta t \times SHC$$

21. % porosity =
$$\frac{Bulk\ volume\ -\ Solid\ volume}{Bulk\ volume} \times 100\%$$

22.
$$saturation\ coefficient = \frac{volume\ of\ water\ absorbed}{bulk\ volume\ -\ solid\ volume}$$